
ENBE 415 
Example Problems 

Dr. Arthur T. Johnson 
 

 
Example 1.2.1  Calculate the expected times for men swimming 500 and 600 m in 
competition. 
 
Solution: 
 
 The Riegel equation (1.2.1) will be used: 
 
  t = axb 
 
 From Table 1.2.1, we find 
 
  a = 596.2 sec/kmb 
  b = 1.02977 
 
 For a distance of 500 m, 
 
  t = 596.2 (0.5)1.02977 = 292 sec (= 4.87 min) 
 
 For a distance of 600 m, 
 
  t = 596.2 (0.6)1.02977 = 352 sec (= 5.87 min) 
 
The extra 100 m requires an extra minute. 
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Example 1.3.3.1.  At the end of the first minute of heavy exercise, what percentages 
of the energy requirement come from anaerobic and aerobic metabolic processes? 
 
Solution: 
 
 From Table 1.3.1, we see that 
 
  aerobic contribution = 65-70% 
  anaerobic contribution = 30-35% 
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Example 1.3.3.2.  Estimate the oxygen requirement to perform a physical work rate 
of 225 N·m/sec. 
 
Solution: 
 
 From page 11, we find that muscular efficiency is about 20-30%.  We’ll use 20%.  
Thus, 
 

 Physiological work = 
sec

mN
1125
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225

2.0
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==  

 
 From page 11, we find the energy equivalence of oxygen to be 20,900 
kN·m/m3O2.  Thus, 
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Example 1.3.3.3. Calculate the oxygen deficit incurred when a 40-year-old resting 
female suddenly begins to work at an external work rate of 92 N·m/sec and 
continues that work for 20 minutes. 
 
Solution: 
 

1. Refer to Figure 1.3.2. The oxygen deficit is the shaded area at the beginning 
of the exercise.  To obtain that area, the difference between the flat line and 
the curve must be integrated from time = 0 until time = 20 min.  The flat line 
has a mathematical description of: 
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The curve can be described by: 
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The difference between the two lines is: 
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Integrating this from t = 0 to t = 1200 sec, 
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The time constant value can be found from Table 1.4.1 as 49 sec, although 
data in Figure 1.3.10 might suggest that τ could be somewhat shorter.  We’ll 
use τ = 49 sec. 
 

 Thus, 
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2. Estimate 
2

O
V&!  

 
An external work rate of 92 N·m/sec will have an efficiency of about 20%. 
The physiological work will thus be about: 
 

  92 
sec

mN
460

20.0

1

sec

mN !
=!

!  

 
Required oxygen consumption is thus: 
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  (p 11) 

 

 = 2.20 x 10–5 
sec

Om
2

3

 (= 1.32 L/min) 

 
This is the value of 

2
O
V&  (work). 

 

2
O
V& (rest) can be found by assuming a physiological work rate of 105 N·m/sec 

at rest (Table 5.2.21).  
2
O
V& rest for women is about 0.8 – 0.85 that of men (p 

391). 
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2
O
V& (rest) = (0.8)(105 

sec

mN ! )
900,20

1
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mkN
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1000
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N

kN ) 

 
  = 0.40 x 10–5 m3O2/sec (compare with the value of 0.42 x 

10–5 m3O2/sec in Figure 1.3.2) 
 
Thus, 

2
O
V&!  = 

2
O
V& work – 

2
O
V& rest 

 = 2.20 x 10–5 – 0.40 x 10–5 = 1.80 x 10–5 m3O2/sec 
 

3. Estimate Oxygen Deficit: 
 

2
O
V& (def) = 49 

2
O
V&!  = 88.2 x 10–5 m3O2 (= 0.882 L) 

 
4. Check 

maxO
2

V& : 
 

From p 14, 
maxO
2

V& for a typical 20-year-old male is 4.2 x 10–5 m3O2/sec. 
 
For a 40-year-old male, there is a decline in 

maxO
2

V&  (p 14). Set up a proportion: 
 

  
maxO
2

V& |40 = 
maxO
2

V& |20 [1 – (1.00 – 0.70)
)2065(

)2040(

!

! ] 

 
  = 3.64 x 10–5 m3O2/sec 
 

A 40-year-old female should have a 
maxO
2

V&  70% of this. 
 
 

maxO
2

V& = (0.7)(3.64 x 10–5) = 2.55 x 10–5 m3O2/sec 
 
Thus, 

2
O
V&  = 2.2 10–5 m3O2/sec < 2.55 10–5 m3O2/sec = 

maxO
2

V&  
 
This means that the final asymptote to the curve in Figure 1.3.2 will be 

2
O
V&  

instead of 
maxO
2

V& . 
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5. Check Maximum Performance Time 
 

Endurance time = 7200 
!
!
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– 7020  (eqn 1.3.6) 

 

 = 7200 !
"

#
$
%

&

20.2

55.2 – 7020 = 1325 sec > 1200 sec 

 
If maximum endurance time were less than 1200, the work would not have 
been able to be performed for the specified time, and the time limit on the 
integral would have had to be changed. 
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Example 1.3.4.1.  Pushing a wheelbarrow requires about 450 W of energy 
expenditure.  Compare endurance times of a 30-year-old woman with a 40-year-old 
man. 
 
Solution: 
 
 Since pushing a wheelbarrow requires 450 W of energy expenditure, about 450 W 
* 20% = 90 W physical work is done. 
 
 Oxygen consumption to push the wheelbarrow is: 
 

450 W * 
mL 1000

L1

min

sec60
*

sec W20.18

mL1
=

!
= 1.34 L/min 

 
Maximum oxygen consumption for a 30-year-old woman is about 2.00 L/min.  
Thus, 
 

 twd = 120 !
"

#
$
%

&

L/min34.1

L/min 00.2  – 117 = 62 min 

 
For the 40-year-old man, 

maxO
2

V& = 2.60 L/min.  Thus, 
 

 twd = 120 !
"

#
$
%

&

L/min 1.34

L/min 60.2  – 117 = 116 min 

 
In reality, the man would probably weigh more and have a 20% higher oxygen 

consumption for the same task.  Thus, 
 

2
O
V& = (1.2)(1.34 L/min) = 1.61 = L/min 
 

twd = 120 !
"

#
$
%

&

L/min 1.61

L/min 60.2 – 117 = 77 min 
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Example 1.3.4.2.  Rescue climbing sometimes requires an energy expenditure of 
700W and must be sustained for up to110 min.  How fit must the person be to 
qualify to do this job? 
 
Solution:  We will find the required 

maxO
2

V& . 
 
First oxygen consumption is: 
 

 700 W * L/min 08.2
mL 1000

L1
*

min

sec 60
*

sec W20.18

mL 1
=

!
 

 
Manipulating the endurance equation: 
 

maxO
2

V& = !
"

#
$
%

& +

min120

min 117 min 110 (2.08 L/min) = 3.93 L/min 

 
This is an extremely fit individual.  A male in his 20s could perform at this level if he is 
nearly three standard deviations about the mean. 
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Example 1.3.6.1.  Develop a simple mathematical model to describe oxygen uptake 
kinetics. 
 
Solution:  Upon thinking about this problem, we might decide that it makes sense to us if 
the rate of change of oxygen consumption would be related to the difference between the 
actual rate and the required rate.  So, a larger difference between the actual rate and the 
required rate would call for a huge rate of change in oxygen consumption rate.  As the 
actual rate of oxygen consumption approaches the required rate, the rate of change of 
oxygen consumption would slow down.  This process is actually illustrated in the rising 
portion of Figure 1.3.2, where the oxygen deficit is being accumulated. 
 
 This process can be described automatically as: 
 
 rate of change of oxygen consumption = k (difference between required rate and 
actual rate of oxygen consumption) 
 

  [ ]
2O

dt

d
V&  = k[

2
O
V& (req) – 

2
O
V& ] 

 
where 

2
O
V& = actual rate of oxygen consumption, 

2
O
V& (req) = required rate of oxygen 

consumption, t = time, and k = proportionality constant. 
 
Putting in the initial condition: 
 
  

2
O
V&  = 

2
O
V& (0) at t = 0 

 
 Ce–k(0) = C = 

2
O
V& (req) – 

2
O
V& (0) 

 
 C = 

2
O
V& (req) – 

2
O
V& (0) 

 
Thus, 
 
 

2
O
V& (req) – 

2
O
V& = [

2
O
V& (req) – 

2
O
V& (0)]e–kt 

 
Therefore, 
 
 

2
O
V& = 

2
O
V& (req) – [

2
O
V& (req) – 

2
O
V& (0)] e–kt 

 
Remarks: 
 
 We know from Figure 1.3.6 that the required rate of oxygen consumption is 
related to the power produced, so for any given power value the required rate of oxygen 
consumption is constant and predetermined. 
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 This is an example of a compartmental problem, and the mathematical expression 
given above is typical of models for compartmental problems. 
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Example 1.3.6.2  Mathematically solve the model for oxygen uptake kinetics given in 
Example 1.3.6.1. 
 
Solution: 
 
 The equation developed for that problem was: 
 

[ ]
2O

dt

d
V&  = k[

2
O
V& (req) – 

2
O
V& ] 

 
This can be solved in a number of ways, one of which will be illustrated here. 
 
 Define a new variable 
 
  x = 

2
O
V& (req) – 

2
O
V&  

 
 Because 

2
O
V& (req) is not a function of time, 

 

  
dt

dx = 0 – 
dt

2O
Vd &

 

 
 So, the equation above becomes 
 

  –
dt

dx = kx 

 

  –
x

dx = k dt 

 

  !"
x

dx = ! dtk  

 
 This is an indeterminate integral that requires a constant of integration 
 
 – ln x = kt + C 
 
 x = Ce–kt = 

2
O
V& (req) – 

2
O
V&  

 
 At t = 0, 

2
O
V& = 

2
O
V& (0), the initial rate of oxygen usage 

 
 Thus, 
 
  x = Ce–k(0) = C = 

2
O
V& (req) – 

2
O
V& (0) 
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 Hence, 
 
 Ce–kt = [

2
O
V& (req) – 

2
O
V& (0)] e–kt = 

2
O
V& (req) – 

2
O
V&  

 
 or, 

2
O
V& = 

2
O
V& (req) – [

2
O
V& (req) –

2
O
V& (0)] e–kt 

 
 where k = 1/τ and τ = time constant 
 
Remark: 
 
 Notice that the equation for 

2
O
V& varies from 

2
O
V& (0) at t = 0 to 

2
O
V& (req) at t = ∞. 
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Example 2.3.1  Calculate the Cost of Transport for walking, swimming, and running 
for an average young man. 
 
Solution: 
 

Walking We could take data appearing in Table 5.2.22 or Table 2.3.1.  From 
Table 2.3.1, 

 
  Pi = 363 N·m/sec 
  S = 1.56 m/sec 
  W = 686 N 
 

 CT = 339.0
N)m/sec)(686 (1.56

m/secN 363
=

!  

 
Swimming From Table 2.3.1, 
 
  Pi = 781 N·m/sec 
 
 From equation 1.2.2, 
 

  s = 
a

b)1(x !

 

 
 From Table 1.2.1, 
 
  a = 596.2 sec/kmb 
  b = 1.02977 
 
 Assuming a distance of 0.4 km, 
 

  s = 
2.596

4.0
02977.0!

 = 0.00172 km/sec 

 
    = 1.72 m/sec 
 

  CT = 
N) m/sec)(686 (1.72

m/secN781 !  = 0.662 

Running From Table 2.3.1, 
 
  Pi = 1353 N·m/sec 
 
 From Table 5.2.22, 
 
  s = 4.47 m/sec 
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  CT = 
N) m/sec)(686 (4.47

m/secN 1353 !  = 0.441 

 
Remark: Each of these Costs of Transport is less than the migratory  

dividing line at 2.0, so this man could be a migrator. The Cost of 
Transport for swimming is probably higher than the other two 
exercises because of the viscosity and density of water compared 
to air. 
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Example 2.4.1  Calculate the approximate Reynolds number of a running human. 
 
Solution:  Reynolds number is calculated from equation 4.2.74 as 
 

  Re = 
µ

!dv  

 
Taking the circumferential chest measurement of 100 cm (small man or large woman) as 
the basis for finding an average diameter, assuming a circular cross-section, 
 
   πd = circumference 
 

     d = 
!

m/cm)10(cm) 100( 2"

=0.318 m 

 
A medium walking speed is about 1.3 m/sec whereas a very fast running speed is about 
6.7 m/sec.  We can assume something in between, say 3 m/sec. 
 
Surrounding the human is air with a density of about 1.20 kg/m3 and viscosity of 1.81 x 
10–5 kg (cm·sec).  Thus, 
 

 Re = 
sec)kg/(m10 x 81.1

)kg/m 0m/sec)(1.2 m)(3318.0(
5-

3

!
 = 63,000 

 
Remark:  With a Reynolds number this high, the human will generate turbulence in the 
surrounding air. 
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Example 2.6.1  A person works at a rate of 70% of 
max2

O
V& .  How long would she be 

expected to work at this pace?  How long a rest period would be needed before she 
could again work at 70% of 

max2
O
V& ? 

 
Solution: 
 
 From equation 2.6.1, 
 

 texh = 7200 
!
!

"

#

$
$

%

&

2

max2

O

O

V

V

&

&

 – 7020 

  = 7200 !
"

#
$
%

&

70.0

1  – 7020 = 3266 sec = 54 min 

 
 From equation 2.6.2, 
 

 trest = 528 ln 
!
!

"

#

$
$

%

&
'
(
(

)

*

+
+

,

-
5.0

max2

2

O

O

V

V

&

&

 + 1476 

 
  = 528 ln (0.70 – 0.50) + 1476 
 
  = 626 sec = 10 min 
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Example 3.2.2.1  Calculate the flow resistance of the capillaries. 
 
Solution: 
 
 Resistance is pressure drop divided by flow rate (equation 3.2.12).  According to 
Table 3.2.6, the mean pressure in the arterioles, just prior to the capillaries, is 8,000 N/m2, 
and the mean pressure downstream in the venules, is 2700 N/m2.  Thus, pressure drop 
between arterioles and venules is: 
 
  ∆p = 8000 – 2700 = 5300 N/m2 
 
Resting cardiac output is normally about 83 cm3/sec (5L/min) from Table 3.2.4.  Thus, 
the resistance of the capillaries is: 
 

  R = 
V

p

&

!  = 
sec/cm 83

N/m 5300

3

2

 · 106 
5

6

3

3

m

secN
10x 64

m

cm !
=  

 
Remark:  The resistance calculated above probably includes a small amount of arteriolar 
resistance and a small amount of venule resistance.  If we had chosen the capillary to 
venule pressure difference, the pressure drop would have been 4000 – 2700 = 1300 N/m2, 
and resistance would have been 16 x 106 N·sec/m5, and if we had chosen instead to use 
the arteriole to capillary pressure drop the pressure difference would have been 8000 – 
4000 = 4000 N/m2, and resistance would have been 48 x 106 N·sec/m5.  The actual 
capillary resistance is probably between 16 x 106 and 48 x 106 N·sec/m5.  This is the 
resistance of all capillaries in parallel. 
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Example 3.2.2.2.  Calculate the flow resistance of an individual capillary. 
 
Solution: 
 
 If we assume laminar flow (a dangerous assumption, but justified in the case of a 
very small diameter capillary), 
 

   R = 
4

L8

o
r!

µ    (equation 3.2.12) 

 
From Table 3.2.2, capillary diameter is about 6 x 10–6 m.  We don’t know the length, so 
we can calculate resistance per millimeter of length.  Thus, L = 10–3 m. 
 
 The value of viscosity is influenced by the Fahraeus-Lindqvist effect, so we must 
calculate apparent viscosity.  From equation 3.2.21, 
 

   
1

141

!

"
"
#

$

%
%
&

'

(
(

)

*

+
+

,

-
!+=

p

b

o

b
r µ

µ.
µµ  

 
where δ = 1 x 10–6 m (p 86), and µp = 1.1 – 1.6 x 10–3 kg/(m·sec) (p 79).  We’ll use µp = 
1.3 x 10–3 kg/(m·sec). 
 
 The value of µb can be obtained as 8 x 10–3 kg/(m·sec) from Figure 3.2.7A with 
45% hematocrit (p 72) and a shear rate of zero. 
 
 Thus, 

 µ = (8 x 10–3)
1

3-

3-

6-

6-

1
10 x 3.1

10 x 8

10 x 3

10 x 1
41

!

"
#

$
%
&

'
((
)

*
++
,

-
!((

)

*
++
,

-
+  

 
  = 1.02 x 10–3 kg/(m·sec) 
 
Therefore, 
 

 R = 
46

233

m)10 x 3(

kg)m/(secN sec))(1kg/(m 10 x m)(1.0210 x 1(8
!

!!
"""

#
 

 

  = 3.2 x 1016 
5

m

secN !  

 
Remark: 
 
 Actually, the fact that the apparent viscosity was calculated to be less than the 
plasma viscosity makes no sense, because the plasma viscosity is the lowest possible 
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value.  The reason this happened is because the assumption 1<<
!r

" is not true in this case. 

Apparent viscosity can be calculated by comparing equation 3.2.11 with equation 3.2.18 
to obtain: 
 

 µ = µp

1
4

111

!

"
"

#

$

%
%

&

'

((
)

*
++
,

-
!((

)

*
++
,

-
!!

b

p

or µ

µ.
 

  = (1.3 x 10–3)

1

3

3
4

6

6

10 x 8

10x 3.1
1

10 x 3

10 x 1
11

!

!

!

!

!

"
"

#

$

%
%

&

'

((
)

*
++
,

-
!((

)

*
++
,

-
!!  

 
  = 1.56 x 10–3 kg/(m·sec) 
 
and R = 4.9 x 1016 N·sec/m5.  Actual capillary resistance will be higher than this because 
of the twists and bends and the occasional red blood cell being pushed through. 
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Example 3.2.2.3  Calculate the approximate number of capillaries in parallel in the 
vasculature. 
 
Solution: 
 
 From Example 3.2.2.2 we calculated the resistance of an individual capillary 1mm 
long to be about 4.9 x 1016 N sec/m5.  From Example 3.2.2.1 we calculated the total 
resistance of all capillaries in parallel to be about 30 x 106 N·sec/m5.  If the capillaries are 
in parallel and approximately of equal resistances, then the total resistance is just the 
resistance of a typical capillary divided by the number that are in parallel.  Thus, 
 

 number of capillaries = 
scapillarie all of resistance

capillary one of resistance  

 

  = 
56

516

sec/mN 10 x 30

sec/mN 10 x 4.9

!

!  

 
  = 1.6 x 109 
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Example 3.2.2.4  Calculate the approximate Reynolds number for a red blood cell 
flowing through a capillary. 
 
Solution: 
 
 The RBC moves through the capillary, but not as fast as surrounding blood 
plasma.  Thus, we first calculate the velocity of plasma. 
 
 From Example 3.2.2.3 we calculated approximately 1.6 x 109 capillaries in 
parallel.  Because the entire cardiac output (83 x 10–6 m3/sec) flows through these 
capillaries, then the volume flow rate through each capillary is: 
 

   V&  = 
scapillarie 10 x 6.1

sec/m10 x 83
9

36!

 = 5.2 x 10–14 m3/(sec cap) 

 
Velocity is volume flow rate divided by cross-sectional area, and, with capillary diameter 
of 6 x 10–6 m (Table 3.2.2): 
 

  A = 
4

d
2!  = 

4

m)10 x (6 26!"  = 2.83 x 10–11 m2/cap 

 

  v = 
A

V& = 
211

314

m 10 x 83.2

/secm  x105.1

!

!

 = 1.83x 10–3 m/sec 

 
If the plasma travels three times faster than the RBCs, then 
 

  vRBC = m/sec
3

10 x 83.1
-3

= 6.12 x 10–4 m/sec 

 
and the relative velocity of RBCs in the plasma stream is: 
 
   v = 1.83 x 10–3 m/sec – 6.12 x 10–4 m/sec = 1.22 x 10–3 m/sec 
 
The RBC has an elliptic cross section, 7.5 µm x 0.3 µm.  In order to obtain an average 
diameter needed for the Reynolds number calculation, we first calculate the area of the 
ellipse and then calculate what circular diameter would provide the same area.  This is the 
diameter we’ll use in the Reynolds number calculation. 
 
 Area of ellipse = πab = π(7.5 x 10–6 m)(0.3 x 10–6 m) = 7.07 x 10–12 m2 
 

 d = 
!

area elliptic4 " =3 x 10–6 m 
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The density of plasma is about 1020 kg/m3, and the viscosity of about 1.4 x 10–3 
kg/(m·sec).  Thus, the Reynolds number is 
 

 Re = 
µ

!dv = 
sec)kg/(m10 x 4.1

)kg/m 0m/sec)(10210 x m)(1.2210 x 3(
3-

3-3-6

!
 

 
 = 2.66 x 10–3 
 
Remark:  Note that one dimension of the RBC (7.5µm) is larger than the capillary 
diameter (6µm).  RBCs cannot move through the capillary without folding, and it is the 
friction caused by rubbing against the capillary wall that slows the RBC relative to the 
plasma. 
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Example 3.2.3.1  What is the expected heartrate for a 35-year-old man performing 
work at 70% of his 

maxO
2

V& ? 
 
Solution: 
 
 Resting 

2
O
V& = 10% 

maxO
2

V& . 
 
Max hr = 220 – age = 220 – 35 = 185 beats/min 
 
predicted hr = 70 + (0.7 – 0.1)(185 – 70) 
 
         = 139 beats/min 
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Example 3.3.1.1  Estimate Parameter Values for the Carotid Sinus Stretch Receptor 
Equation 3.3.2. 
 
Solution: 
 
Values for the parameters β+, β–, β0, and pth can be estimated from Figure 3.3.2, Table 
3.2.6, and some simple assumptions.  From Figure 3.3.2, we see that pulsatile flow results 
in a higher frequency output than does a constant, nonpulsatile flow.  In pulsatile flow the 
terms dp/dt must assume both positive and negative values.  The first assumption to be 
made, therefore, is: 
 

Assumption 1: both positive and negative dp/dt result in an increase of receptor 
output frequency. 

 
Another assumption relates to the relative durations and magnitudes of increasing and 
decreasing phases of pulsatile pressure: 
 

Assumption 2: both positive and negative dp/dt will have equal magnitudes and 
durations. 

 
To estimate values for dp/dt, we obtain from Table 3.2.6, that blood pressure in a large 
artery is 16,700 N/m2 (systolic) and 10,300 N/m2 (diastolic). 
 

Assumption 3: the pulsatile pressure in Figure 3.3.2 is due to normal pressure 
pulses in a large artery. 

 
From page 93, we find that average heart rate is 1.17 beats/sec.  Thus, the average beat-
to-beat period = 1/1.17 = 0.855 sec/beat. 
 

Average 
t

p

dt

dp

!

!
"  

 
From assumption 2, ∆t= one half of the period, or 0.427 sec. 
 

Thus, 
sec

N/m
976,14

427.0

300,10700,16
2

=
!

=
"

"

t

p  

 
Because we have no better information, we make an additional assumption: 
 
 Assumption 4:  β– = – β+ 
 
The negative sign is included to make the increment in discharge frequency positive for a 
negative dp/dt. 
 
From Figure 3.3.2, the additional discharge frequency due to pulsatile pressure is: 
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  ∆f ≈ 25 pulses/sec 
 

Thus, ∆f = 2 β+ !
"

#
$
%

&

'

'

t

p
 

 β+ = 
)14976)(2(

25 = 8.35 x 10–4 
N

m  impulses 2
!  

 

 β– = – β+ = –8.35 x 10–4 
N

m  impulses 2
!  

 
To obtain a value for β0 and pth, 
 
 Assumption 5:  pth is the lowest pressure appearing in the curve in Figure 3.3.2. 
The validity of this assumption is not too important, because a different value of pth will 
just result in a different value of β0 to give the same frequency, f. 
 
 pth = 7000 N/m2 
 

Assumption 6: the value of the constant pressure in Figure 3.3.2 is the average of 
systolic and diastolic pressures. 

 

Thus, p = 
2

10,300  16,700 + = 13,500 N/m2 

 
From Figure 3.3.2, 
 
 f ≈ 90 at 13,500 N/m2 
 
 Assumption 7:  the relationship between pressure and firing rate is linear. 
 
Therefore, 
 
 f = β0 (p – pth) = 90 = β0 (13,500 – 7000) 
 

 β0 = 
500,6

90 = 1.38 x 10–2 
N  sec

m  impulses 2

!

!  

 
Hence, equation 3.3.2 is: 
 

 f = (8.35 x 10–4)
dt

dp + 1.38 x 10–2 (p – 7000)    
dt

dp >0 

          p > pth  
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 f = –8.35 x 10–4

dt

dp  + 1.38 10–2 (p – 7000)    
dt

dp <0 

          p > pth 
or, 

 f = 8.35 x 10–4

dt

dp  + 1.38 10–2 (p – 7000)    p > pth 

 
or, 

 f = 8.35 x 10–4 !
"

#
$
%

&
'
(

)
*
+

,

dt

dp
sgn

dt

dp
+ 1.38 x 10–2 (p – 7000)  p > pth 

  where sgn !
"

#
$
%

&

dt

dp = + for dp/dt > 0 

       = – for dp/dt < 0 
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Example 3.5.1.1  Force-Length relationship for Hill’s muscle model.  Tabulate values 
for muscle force and relative length for a cat papillary muscle fiber using Hill’s model 
undergoing static contraction. 
 
Solution: 
 
 Refer to the model on the left in Figure 3.4.1, and to force-length diagrams in 
Figure 3.5.5 and 3.5.6.  To illustrate the method, choose a relative length of 1.30 for the 
contractile element and parallel elastic element (both have the same length).  From Figure 
3.5.6, 
 
The maximum contractile force is: 
 
   Fc max = 81 x 10–3 N 
 
and the parallel element force is 
 
   Fp = 33 x 10–3 N 
 
Maximum total force produced by both elements is (from equation 3.5.16): 
 
   Fmax = (1 + φ)Fc max + Fp 
 
where φ = 0.02 (p 136) 
 
   Fmax = (1.02)(81 x 10–3) + 33 x 10–3 = 115.62 x 10–3 N 
 
Because the series elastic element must transmit the maximum total force, the force on 
the series elastic element is 115.62 x 10–3 N.  From Figure 3.5.5, this corresponds to a 
relative length of 0.156. 
 
 From equation 3.5.13, 
 
   L = Ls + Lc = 0.156 + 1.30 = 1.46 
 
Maximum force-lengths for the muscle are: 
 

Lc Fc max Fp Fmax Ls L 
      

1.00 0 0 0 0.00 1.00 
1.05 19 0 19.38 0.02 1.15 
1.10 39 0 39.78 0.12 1.22 
1.15 62 0 63.24 0.14 1.29 
1.20 86 0 87.72 0.15 1.35 
1.25 95 4 98.80 0.15 1.40 
1.30 81 33 115.62 0.62 1.46 
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Values for minimum force can be found using equation 3.5.15 with φ = 0.02.  Tabulated 
values are: 
 

Lc Fmin Ls L 
    

1.00 0 0.00 1.00 
1.05 19.38 0.00 1.05 
1.10 39.78 0.02 1.12 
1.15 63.24 0.03 1.18 
1.20 87.72 0.04 1.24 
1.25 96.90 0.07 1.32 
1.30 82.62 0.12 1.42 
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Example A3.1.1  Approximate Equation 3.3.2 as a finite difference equation: 
 
Solution: 
 
 First, let us use the third form of Equation 3.3.2 appearing as a solution in 
Example 3.3.1.1: 
 

f = 8.35 x 10–4 !
"

#
$
%

&
'
(

)
*
+

,

dt

dp
sgn

dt

dp
+ 1.38 x 10–2 (p – 7000)  p > pth 

Using the central difference approximation to the first derivative, 
 

  
11

11

!+

!+

!

!
"

ii

ii

tt

pp

dt

dp  

 
So, 
 

 f = 8.35 x 10–4 
!
!
"

#

$
$
%

&

'

'

'+

'+

11

11

ii

ii

tt

pp
+ 1.38 x 10–2 [pi – 7000] 

 
If the time step, ti + 1 – ti, is designated as ∆t, 
 

 f = 8.35 x 10–4 !
"

#
$
%

&

'

( (+

t

pp
ii

2

11  + 1.38 x 10–2 [pi – 7000] 

 
Solving for pi + 1, 
 

 pi + 1 = pi – 1 + 2∆t !
"

#
$
%

& ''
'4

-2

10 x 35.8

)7000(10 x 38.1 ipf     (1) 

 
This form of the equation can be used to estimate the next pressure (pi + 1) once the 
frequency, the former pressure (pi – 1), and the present pressure (pi) are known.  To start 
the numerical process, the forward difference approximation is used: 
 

   
t

pp

dt

dp

!

"
# 12  

 

 f = 8.35 x 10–4 !"

#
$%

&

'

(

t

pp
12  + 1.38 x 10–2 [p1 – 7000] 

 

 p2 = p1 + ∆t !
"

#
$
%

& ''
'

'

4

1

2

10 x 35.8

)7000(10 x 1.38 pf     (2) 
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This equation can be used to obtain the value of p2 from p1 and f.  Once p1 and p2 are 
known, then 
 

 p3 = p1 +2∆t !
"

#
$
%

& ''
'

'

4

2

2

10 x 35.8

)7000(10 x 38.1 pf  

from the previous Equation (1).  Thereafter, Equation (1) can be used to find subsequent 
values of pressure. 
 
Note:  This example is a somewhat backwards illustration.  Usually, an equation such as 
Equation 3.3.2 would be used to find discharge frequency from pressure.  In this 
example, we have found pressure from frequency.  By this means, the method was 
demonstrated, although this would not be a normal way of using Equation 3.3.2. 
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Example 4.2.2.1  At what rate is CO2 being added to the atmosphere by the world’s 
population? 
 
Solution: 
 
Assume 1/3 sleeping 75W energy expenditure 
 1/3 resting 125W 
 1/3 working 200W 
  400W total 
 

 
2
O
V& = 400W * L/min2.1

mL 1000

L 1
*

sec

min 60
*

20.18

mL/sec 1
=  

 
If Respiratory Exchange Ratio ≈ 0.9, 
 
 

2
CO
V& = 1.2 L/min * 0.9 = 1.1 L/min 

 
For 5 billion people, total 

2
CO
V& is 5.4 x 109 L/min.  Of course other human activities add a 

great deal more. 
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Example 4.3.2.1  What is the maximum resistance of an external breathing device to 
be unnoticeable? 
 
Solution: 
 

If 
internal

external

R

R < 25% for no effect, 

 
and Rinternal = 4.00 cm H2O·sec/L 
 
the Rexternal = 4.00 * 0.25 = 1.00 cm H2O·sec/L 
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Example 4.3.4.1  How much air needs to be stored in a SCUBA tank to sustain an 
average-fitness swimmer for 30 minutes? 
 
Solution: 
 
From the energy expenditure Table 5.2.22, swimming requires about 800W energy 
expenditure. 
 

 
2
O
V& = 800W * L/min 2.4 

mL 1000

L 1
*

min

sec 60
*

20.18W

mL/sec 1
=  

 
From Figure 4.3.26, the corresponding pulmonary ventilation is 60 L/min. 
 
Thus, the total amount of air = 60 L/min * 30 min = 1800 L 
 
Note:  We may be tempted to say that a tank containing 2.4 L/min *30 min = 72 L of 
pure oxygen is sufficient to sustain the swimmer.  That is not true!  Because respiratory 
control depends almost exclusively on CO2 produced, the swimmer would still need 
about 1800 L of oxygen in the tank. 
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Example 5.2.6.1  In order to perform a transplant operation, the patient’s body 
temperature must be reduced to 30oC.  This is to be done by routing the blood 
through a chiller.  Assume that the blood can be cooled at most to 25oC.  How long 
will this take for a 70 kg patient? 
 
Solution: 
 
Normal body temperature is 37oC.  However, we’ll assume that cooling starts when the 
patient’s body temperature is 34.7oC. 
 
A resting body pumps blood at 5L/min.  This is about 5 kg/min. 
 
If we assume that blood enters the body at 25oC and leaves at body temperature, the heat 
balance is: 
 
 rate of heat in – rate of heat out + rate of heat generation 
 
   = rate of change of heat stored 
 
The rates of heat in and out will depend on convection in the arteries and veins, and is 
equivalent to the change of heat storage in the blood as it flows through the chiller: 
 
 (rate of heat in – rate of heat out) = – )25( bloodblood !"

p
cm&  

 
 and θblood soon equilibrates with body temperature. 
 
The rate of heat generation is fairly small for an anaesthetized patient, and it decreases as 
the patient cools.  Thus, the rate of heat generation will be assumed negligible for this 
example.  Otherwise, it could be estimated from the BMR with temperature dependence. 
 
 The rate of change of heat stored in the body is: 
 

   mbody cp
t!

!"
 

 
 Thus, the approximate heat balance becomes 
 

   mbody cp
t!

!" = )25(blood !! "
p
cm&  

 
If the specific heat of blood and body are nearly the same,  
 

 then, mbody 
t!

!" = –
blood
m& (θ – 25) 
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Using the forward difference approximation to the derivative (Appendix 3.1), 
 

 
t

m
ii

!

"+ )( 1

body

##
= –

blood
m& (θi – 25) 

 
Solving for θi + 1, 
 

 θi + 1 = θi – 
body

blood )25(

m

tm
i
!" #&

 

 
Using mbody = 70 kg 
 

blood
m&  = 5 kg/min 

 ∆t = 1 min 
 θ1 = 34.7oC 
 
We obtain the following graph, from which we see that cooling will occur in 9 minutes. 
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Example 5.5.1.1  What would be the rate of moisture that would be expected to be 
added to the air in a room by a person working at a rate of 150W physical work and 
who is in thermal equilibrium in the room at 105W physiological work? 
 
Solution: 
 
The person working at 150W physical work probably has a muscular efficiency of 15–
20%.  Thus, the physiological work is: 
 
  Physiol work rate = 150W/0.20 = 750W 
 
If the person is in thermal equilibrium at 105W, then the excess heat to be removed by 
sweating is about 
 
  Ereq ≈ 750W – 105W = 645W 
 
The rate of sweat production is 
 
 

sw
m&  = 7.75 x 10–6 Ereq (Emax/A)–0.455 

  = 7.75 x 10–6 (645)(1200/1.8) –0.455 
  = 2.59 x 10–4 kg/sec 
 


